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ABSTRACT: Oxidation of carbene-stabilized diarsenic,
L:As−As:L [L: = :C{N(2,6-iPr2C6H3)CH}2] (1), with
gallium chloride in a 1:4 ratio in toluene affords the
dicationic diarsene complex [L:AsAs:L]2+([GaCl4]

−)2
(22+[GaCl4]2), while oxidation of 1 with GaCl3 in a 1:2
ratio in Et2O yields the monocationic diarsenic radical
complex [L:AsAs:L]•+[GaCl4]

− (2•+[GaCl4]). Strikingly,
complex 2•+ is the first arsenic radical to be structurally
characterized in the solid state. The nature of the bonding
in these complexes was probed computationally and
spectroscopically.

Carbene-stabilized diatomic main-group allotropes1−5 are
intriguing, as they provide convenient “zero-oxidation-

state” platforms from which further chemistry may be explored.
While the first such complex, carbene-stabilized disilicon,
L:SiSi:L [L: = :C{N(2,6-iPr2C6H3)CH}2], was reported by
this laboratory in 2008,6 subsequent examples of carbene-
stabilized diatomic main-group allotropes include P2,

7,8 As2,
9

Ge2,
10 B2,

11 and Sn2.
12 The emerging chemical reactivity of

these molecules is as fascinating as it is provocative. For
example, L:SiSi:L was utilized in the synthesis of a “push−
pull”-stabilized derivative of the parent silylene (:SiH2)

13 while
L:P−P:L functioned as a bidentate ligand in chelating the BH2

+

cation.14 Might carbene-stabilized diarsenic, L:As−As:L (1),9

similarly possess novel reactivity? Herein we report the
syntheses,15 molecular structures,15 computational studies,16

and electron paramagnetic resonance (EPR) spectra of [L:As
As:L]2+([GaCl4]

−)2 (22+[GaCl4]2) and [L:AsAs:L]•+[GaCl4]
−

(2•+[GaCl4]). Complex 22+, a carbene-stabilized diarsene
dication, and complex 2•+, a carbene-stabilized monocationic
diarsenic radical cation, were both prepared by oxidation of 1
using gallium chloride. Notably, complex 2•+ is the first stable
arsenic radical to be structurally characterized.
In contrast to transition metals, the main-group p-block

elements do not readily undergo one-electron redox
reactions.17 Regarding the heavier group 15 elements,
persistent18 and stable18 radicals have been experimentally
realized only for phosphorus.19−24 Bertrand recently reported
that carbene−P2 complexes could be oxidized to the
corresponding monocationic P2

•+ radicals and P2
2+ dications

using Ph3C
+B(C6F5)4

− and ferrocenium triflate, respectively.19

In contrast, the radical chemistry of arsenic, antimony, and
bismuth is largely unexplored.18 Indeed, persistent arsenic-

centered radicals have been studied experimentally only by gas-
phase electron diffraction25 and EPR spectroscopy.20,26

Although gallium halides reportedly are poor oxidizing
reagents,27 Bertrand’s report of the one-electron oxidation of
the cyclic (alkyl)(amino)carbene (CAAC)-stabilized parent
borylene to the corresponding borinylium complex (H−B•+)
using GaCl3 is significant.

28 In our laboratory, the reaction of 1
with GaCl3 in a 1:4 ratio in toluene quantitatively resulted in
the orange dicationic diarsene complex 22+[GaCl4]2 (Scheme
1). However, the reaction of 1 with GaCl3 in a 1:2 ratio in Et2O

afforded the green monocationic diarsenic radical complex
2•+[GaCl4] in 29.1% yield (Scheme 1). Similarly, AlCl3 and
InCl3 were also shown to oxidize 1 to 22+[ECl4]2 (E = Al, In).
Our investigation suggested that the [ECl4]

− (E = Al, Ga, In)
counteranions may affect the stability of the dicationic [L:As
As:L]2+ fragment in polar solvents. In acetonitrile, while the
orange compounds 22+[ECl4]2 (E = Al, Ga) were stable, orange
22+[InCl4]2 gradually decomposed with the color changing to
green.
The compound 2•+[GaCl4] was isolated from the hexane/

THF mixed solvent as dark-green crystals. X-ray structural
analysis15 (Figure 1) showed that the As2 core of 2•+ is
disordered (only one set of disordered structural data is shown
in Figure 1) with an average As−As bond distance of 2.32 Å,
which falls between the As−As single bond distance in 1
[2.442(1) Å] and the AsAs double bond distance [2.224(2)
Å] in RAsAsR′ [R = 2,4,6-tBu3C6H2; R′ = CH(SiMe3)2].

29

The average As−C bond distances of 1.92 Å−1.95 Å in 2•+ are
somewhat longer than those in 1 [1.881(2) Å].9 The computed
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Scheme 1. Gallium Chloride Oxidation of L:As−As:L
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As−As bond distance of 2.388 Å in the simplified model 2H•+

[in which L: was replaced by :C(NHCH)2; optimized in C2
symmetry]16 is ∼0.06 Å longer than that in 2•+. The As2-based
localized molecular orbitals (LMOs) of the simplified 2H•+

model (Figure 2) include one As−As σ bonding orbital (a), one

lone-pair orbital on each As atom (b), one As−As π bonding
orbital (c), and one As−As π* singly occupied molecular orbital
(SOMO) (d), which is in accordance with the 1.218 As−As
Wiberg bond index (WBI). Natural bond orbital (NBO)
analysis30 of 2H•+ showed that the As2 core bears a positive
charge of +0.18, which compares to the charge of +0.16 on the
P2 unit in carbene-stabilized P2

•+ radical (3).19 Similar to 3, the
spin density distribution of 2H•+ indicates that the unpaired
electron is largely localized at the As2 core (0.41 at each As
atom), consistent with the SOMO depicted in Figure 2.
The room-temperature EPR spectrum of 2•+ in fluoroben-

zene displays a broadened septet (g ≈ 2.05) with poorly
resolved low- and high-field hyperfine components resulting
from large hyperfine coupling with two equivalent 75As (I =
3/2) nuclei (A ≈ 68 MHz) (Figure 3). Using the correlation
time estimated from parallel NMR studies (10−5 s), the
spectrum was well-simulated as that of a diarsenic radical
involving equivalent As atoms (the simulation parameters are
shown in the Figure 3 caption). Thus, the EPR data
unambiguously support the radical nature of 2•+.
The structural metrics of the present carbene-stabilized

diarsene cations are particularly significant. Both 22+ (Figure 4)

and 1 possess Ci symmetry, and they exhibit similar trans-bent
geometries with C(1)−As(1)−As(1A)−C(1A) torsion angles
of 180.0° and C(1)−As(1)−As(1A) bond angles of ∼100°.9,15
The As−As bond distance in 22+ [2.2803(5) Å] is ∼0.16 Å
shorter than that in 1 [2.442(1) Å] and only marginally shorter
than that observed for 2•+ (2.32 Å av). However, the As−As
bond in 22+ is 0.06 Å longer than the AsAs double bond
reported for RAsAsR′ [2.224(2)].29
The As−C bond distances in 22+ [1.977(2) Å] are slightly

longer than those in 2•+ (1.92−1.95 Å av) but 0.1 Å longer than
those in 1 [1.881(2) Å]. The same trend has also been
observed for the changes in the P−P and P−C bond distances
in carbene-stabilized P2

7 and its cationic derivatives P2
•+ and

P2
2+.19 The computed As−As (2.296 Å) and As−C (1.979 Å)

bond distances in the simplified model 2H2+ [in which L: was
replaced by :C(NHCH)2]

16 are very similar to those in 22+

[As−As, 2.2803(5) Å; As−C, 1.977(2) Å]. The LMOs of 2H2+

(Figure 5) indicate the presence of one As−As σ bond (a) and
one As−As π bond (b) in 22+. The WBI of 1.78 for 2H2+ is
supportive of arsenic−arsenic double-bond character in 22+.

Figure 1.Molecular structure of 2•+. Thermal ellipsoids represent 30%
probability. H atoms have been omitted for clarity. Selected bond
distances (Å) and angles (deg): As(1)−As(2) 2.332(3), As(1)−C(1)
1.960(4), As(2)−C(28) 1.938(5), C(1)−N(1) 1.358(5), C(1)−N(2)
1.346(5), C(28)−N(3) 1.357(5), C(28)−N(4) 1.359(5); C(1)−
As(1)−As(2) 92.10(14), C(28)−As(2)−As(1) 101.02(16), N(1)−
C(1)−As(1) 123.9(3), N(2)−C(1)−As(1) 129.0(3), N(3)−C(28)−
As(2) 135.3(3), N(4)−C(28)−As(2) 118.9(3).

Figure 2. LMOs of 2H•+ with C2 symmetry: (a) As−As σ bonding
orbital; (b) one of the two As lone-pair orbitals; (c) As−As π bonding
orbital; (d) As−As π* antibonding SOMO.

Figure 3. Room-temperature X-band EPR spectrum of 2•+ in
fluorobenzene (red line) recorded at 9.59 GHz with a modulation
amplitude of 1 mT and a microwave power of 80 mW. Also shown is
the almost perfectly superposed simulated spectrum (black line),
which was generated with the EasySpin software package using a
correlation time of 10−5 s; gx,y,z = 2.0458, 2.0457, and 2.0452; and two
identical 75As nuclei (I = 3/2) with Ax,y,z = 67.1, 68.0, and 67.8 MHz.

Figure 4.Molecular structure of 22+. Thermal ellipsoids represent 30%
probability. H atoms have been omitted for clarity. Selected bond
distances (Å) and angles (deg): As(1)−As(1A) 2.2803(5), As(1)−
C(1) 1.977(2), C(1)−N(1) 1.353(3), C(1)−N(2) 1.351(3); C(1)−
As(1)−As(1A) 100.10(7), N(1)−C(1)−As(1) 135.61(17), N(2)−
C(1)−As(1) 118.70(17).
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The positive partial charge of +0.77 on the As2 core in 22+

compares well with the charge of +0.73 on the P2 unit in
dicationic 3.19

In summary, one- and two-electron oxidations of carbene-
stabilized diarsenic using gallium chloride were achieved.
Complex 2•+ is the first stable arsenic radical to be structurally
characterized.
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orbital; (b) As−As π bonding orbital; (c) one of the As−C σ bonding
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